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Summary. This paper discusses round-off errors in iterative processes for 
solving equations. Let xn+1 = x, + F(xn) be a scalar iterative converging process; 
the different values x, are represented in a computer with a certain precision; 
when xa, is close to the limit, F(xn) is small and can perhaps be obtained easily 
with a higher absolute precision than xn, ; consequently, the addition x, + F(xn) 
will practically involve a rounding operation. Besides some general remarks, it 
will be shown that for a fixed-point computer an appropriate rounding method 
can provide a more accurate solution to the problem; analogous results are given 
in Appendix I for a floating-point computer; Appendix II deals with Aitken's 62 

process. The author is indebted to A. H. Taub for many suggestions and stimulating 
discussions. 

1. Introduction. Let G(l), G(') be m real functions of the real variables 
(1) ..(mM) x , ... x(m). For any set of m numbers p(l), is p(m) we shall use the vectorial 

notations: 

p = (Il) ... 

P I = /(P(1))2 + ** (P(m))2. 

We consider the iterative process 

(1) Xn+1 = G(xn), n = 0,1, ... 

and suppose there exist a vector r and a number b (O < b < 1) such that 

(2) | G(x) -r I ? b I x-r I for all x; 

the condition (2) insures the convergence of the xn's to r. 
We want to realize the process (1) on a fixed-point computer under the two 

conditions: a) For representing each of the XnM(), we use only one "word"; we 
consider the content of the word as an integer; b) We may use higher precision 
for computing the values of the functions G(), ... G(m) (or the functions G(1) 
XM) G (2) _ X (2)) 

... G(m) - X(m)). 

We distinguish two types of errors: 
1) Truncation errors; even when using double precision, we cannot expect to 

evaluate the functions G(i) exactly; 
2) Round-off errors; according to condition a), the value found for G(t) must 

be rounded to an integer. 
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2. Truncation Errors. Let H ')(x), * . H(m)(x) approximate the functions 
G(1) (x ) X . .. G(m) (x ): 

H(t) (x) = G( (x) + (t ) (x); 

t(i)(x) is called the truncation error; it is supposed to satisfy the inequality 

(3) 1 ()x) i < a'); all) = constant. 

The iterative process 

(4) VA1 = H(Vn) 

is considered as an approximation of (1) and gives some information about r. 
THEOREM 1. For any Vo, the sequence V. given by (4) is bounded and all its 

points of accumulation V satisfy the inequality 

V-r l - Ib; a= (a(), ... a( )). 

THEOREM 2. The process (4) is, the best possible in the following sense: for given 
a and b, there exist m functions H(')(x), ... H(m) (x) for which it is impossible to 
find an algorithm using only H, a, b, providing closer points of accumulation to r 
than the algorithm (4). 

Proof: Let G(x) = bx + a, 

H(x) = bx, 

G'(x) = bx - a. 

a 
H(x) is an approximation for both G(x) and G'(x) with limits r = and 

-a 
r - 

If any sequence Wn has a point of accumulation W such that 

1W - rl < 
a I 

then by the triangular inequality, 

IW-r' I > aj 

and the process (4) provides in this case better information. 

3. Round-off Errors. For the computer, the process (1) can be written in the 
form 

Y = [G(t)(yn) + 4n"]R; 

ynj) is an integer. [ ]R is called a rounding procedure. [X]R is any integer-valued 
function of x satisfying the inequality: 

I [x]R - x I < 1. 
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We consider two particular types of rounding procedures: 
1) Normal rounding: [x]N = [x + 0.5]; 
2) Anomalous rounding: [X]A: for x _ 1, [X]A Ix 

for x>1, I[X]AI x < I. 
THEOREM 3. Let G and t satisfy equations (2) and (3). If 

(6) y =i) = [G(')(y.) 
+ AnN,] i = 1,2* 

then for any yo, there exists N such that 

1Yn-r|? _lb 2(1-b) for n > N; 

furthermore, for given a and b, there exists a function G and errors en for which the 
bound is attained. 

Now, we restrict ourselves to the particular case m = 1; i.e., the process (1) 
becomes scalar. Equations (1), (2), (3), and (5) can be written as: 

(7) Xn+1 =G(Xn); 

(8) G(x) -r ? ! b I x -r ; 

(9) yn+1 = [G(y.) + $JR 

(10) ln Ij a; 

THEOREM 4. Let G(x) and in satisfy equations (8) and (10). If 

(11) yn+1 = yn + [G(y.) + n -Yn] A 

then for any yo, there exists N such that 

IYn+-ri < 
a 

b+ 1 forn > N. 

Let us compare Theorem 4 with Theorem 3 for m = 1. In both cases, the bounds 
of errors have a common part which can be recognized from Theorems 1 and 2 
as provided by the truncation errors. The part due to the round-off errors is in- 
dependent of b for the anomalous rounding; in particular, if a = 0, the error is 
less than 1 and if the limit r is an integer, it is reached after a finite number of 
steps. When the convergence is slow, i.e., b , 1, the errors can be very large for 
the normal rounding, even if a = 0; however, if b < 0.5, the normal rounding 
provides slightly better results than the anomalous rounding. 

Remark. The condition (2) insures a first-order convergence for the process 
(1). If we assume higher convergence, i.e., if 

I G(x) -r I < b I x -r {P. > 1, 

we get results which are quite similar, but generally not simple to formulate. 
Rather roughly, Theorem 4 becomes: if yn is computed by (11), then 

IYn-rj <B+ 1 for n> N, 

where B is due to the truncation error. 
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4. Proofs. 
LEMMA. Let V1 = G(Vo) + to under assumptions (2) and (3); 

a) If tVo-rt < aib) then tVI-r < 1 V 

b) If tVa-tr > a I then tVI-r < t Vo-r|. 

Proof. Since V1 = G(Vo) + to: 

(12) V1 - r < i G(Vo) - rI + Itol _ bVo- ri + tat; 

a) IVo-rt < la l we haveby (12): 

V 1 - r t - _ I b_ 

VI rl a Ia ~l~b+lf 1-b' q e.d. 

b) Vo - r > l b we have by (12): 

V1 -r I ? V0 - rj - (1-b) JVo - rj + tat < V0 - r - tat + 

tat = V0 - rl, q.e.d. 

Proof of Theorem 1. First case: There is N such that I VN- r I_ a b by 

Lemma a, the same inequality holds for all n > N and the theorem is proved. 

Second case: Forall n = 0a 1i,2, b; by Lemmab,the 

positive sequence t V - r is monotone decreasing and converges therefore to a 
limit 1. 

Suppose that - b + d where d > 0; since b < 1, there exists V7 such 

that t Vn-r I < tat + b; by (12): 

tVn+-r t < b ta t + d + tal tab+d= 

which is a contradiction. 
Proof of Theorem 3. Since I [X]N -x I < 0.5, we can write the equation (6) 

in the form 

Yn~i = G(t)(yn) + nj), i = 1, 2, m 

where 

7 n() I < aW+ 0.5, 

and therefore 

I n $ I a I + 0.5 V/M. 
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Replacing kj by nn and I a I by a + 0.5 V/m, we can apply Theorem 1: for any 
E, there exists N such that 

y yn-r I < a + 
1+5-\/V + E for n > N; 

but since the y~jy's are integers, there exists a particular E for which the preceding 
inequality implies 

y Y-r I _ 
I 

a1-.5V for n > N, 

as desired. We have still to show an example valid for every a and b where the 
bound of error is attained. Let 

G () (x) = bx a- - 0.5 

and suppose that for the particular vector yo = 0 we have io = a. Then 

Yn = O and 1yn--r ba + \/in 05 for n > 0. 

Proof of Theorem 4. We use the two simple properties of the anomalous round- 
ing procedures: 

1) X - 1 < [X]A < X + 1; 

2) If p < x < q and q-p > 1, then 

P < P + [X - P] A < q, provided that p is an integer, and 

p < q + [x - q]A < q, provided that q is an integer. 

Since the Yn's are integers, the theorem results from the three statements: 

a a 
I If Iyo-rl < 1-b then yi-rl < 1 b+l; 

II If a y< IY?-r <1 b+ 1, then lYi-rl <1a +1; 

III If lyoO-r r 1 ba + l, then y -r l < I yo-rl. 

Statement I: By Lemma a: 

a -- Yo + G(yo) + 4o yo + a 

By property 1: 

a + a 
r _- b < yo + [G (yo) + 4 - YO] A < I) -b+t e 

Jy1-rI < r + 
a 

+1, q.e.d. 

Statement II: We suppose r + a < Yo < r + a + 1 the proof is 
1 -b Kio -b (h 
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analogous, when 

a a_ 
r - 1ab- 1 < yo < r _ a b); byLemmab: 

i - b i ~- b/ 

p -1a r- 1 < Yo + G(y0) + - o < o q; since 

Yo > r, q - p > 1 and we apply property 2: 

r- -1 < Yo + [G(yo + -yO)IA < yo < r + 
a 

+1; i.e., 

ly,1--rl < r + ab+1 q.e.d. 

Statement III: We suppose yo ? r + 1-b +1 (the proof is analogous when 

yo 
? 

r - a 
I by Lemma b: 

p _ 2r -Yo < Yo + G(yo) + o -yo < yo q; 

by property 2, since q - p > 1: 

2r-yo < yo + [G(yo) + ?o-Yo1A < YO i.e., 

I yj-r I < I yo- r , q.e.d. 

APPENDIX I: Iterative Processes with a Floating-Point Computer* 

Let r be a real number and G(x) be a function such that 

(1) I x + G(x) -r I ? b I x -r with O < b < 1 for any x; 

then the sequence 

(2) Xn+1 = Xn + G(xn) 

converges at least linearly to r for any xo. 
Suppose we want to realize (2) on a binary floating-point computer, i.e., the 

numbers are of the form a 20, where a is an exact binary fraction and d is an in- 
teger. 

A number will be called normalized if 1) 0.5 < a I < 1; 2) a is an exact binary 
fraction representable by N bits and the sign; 3) A ? -p (N and p are fixed num- 
bers); furthermore there exists a real zero, representable for example by a = 0, 
0 = - p; for greater simplicity, this zero will also be included in the class of nor- 
malized numbers. 

We assume that in the realization of (2) on the computer, both Xn and G(xn) are 
represented by normalized numbers; of course G(x) cannot be computed exactly in 
general; so we assume that value effectively computed, 0(x), satisfies the relation: 

(3) nosh = (I 1 tn)Gx + t- I e I < d2 I t I < a; 

* A detailed discussion of the results of this appendix will be found in reference [4]. 
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where t7 and v are functions of x, but d and a are fixed numbers. 
The effective process is given by the operation 

(4) Ynl = [Yn + G(Yn)]R 

where Yn and Yn+l are normalized numbers; since Yn + G(Yn) cannot be generally 
represented by a normalized number, it must be rounded as indicated by [ ]R . 

We concentrate our attention on the rounding procedure in (4) and consider two 
types of rounding procedures: 

1) Normal rounding. Yn+1 = [Yn + G(Yn)]N; Yn+1 is a normalized number 
such that 

I Y.+1 - (Yn + G(Yn)) I= minimum; 

when two different normalized numbers satisfy the above relation, either of them 
can be chosen asyn+1. 

2) Anomalous rounding. Y,,1 = [Yn + G(Y,)]A ; if G(Yn) ? 0 let 

Z be the smallest normalized number such that Z _ Yn + G(Yn), 

W be the greatest normalized number such that W ? Yn ? G(Yn); 

if G(Yn) < O let 

Z be the greatest normalized number such that Z < Yn ? G(Yn) 

W be the smallest normalized number such that W > Yn + G(Yn); 

then 

[Yn + G(YYn)]A = W if W Yn 

[Yn + G(Yln)]A = Z if W= Yn. 

THEOREM. a) For any Yo, by using normal rounding in (4), there exists a finite 
number M such that 

2-N Irj + a(I + 2-N) 
Yn - r I ? BN 2 + 2 - ( + d)(l + b)(+2N) 

for n M. 

b) For any Yo, by using anomalous rounding in (4), there exists a finite number 
M such that 

JY~ - rJ <BA rI2N~l+2P1 + a(1 + 2N'+1) l, - r I < B A 9 | 2|2 + 2` 1 + 2 (1 + 4-d)( 1 b) for > M. 

If BN or BA is negative, it must be replaced by + oo. 
In order to compare these results, first suppose a = 0. Then BA is independent 

of b and d and furthermore remains very small; in case of slow convergence, i.e., 
when b _ 1, BN can become very large. The increase of magnitude of the bounds 
when a > 0 is almost the same for BA and BN for reasonable cases, so that the 
anomalous rounding can be considered safer than the normal rounding. 

Remarks. 1) The relations of normal and anomalous rounding procedures are 
very similar in fixed-point and in floating-point arithmetics; 

2) The bounds BA and BN are reached only in trivial cases; however, examples 
show that they remain realistic in every case. 
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APPENDIX II: Round-off Errors in Aitken's e Process* 

Let G(x) be a real continuous function of the real variable x such that the 
sequence x, defined by 

(1) Xn+1 = G (x,) 

converges to the limit x = r. 
By Aitken's 62 process, we define another sequence: 

fV3'+ = G( V3n) 

(2) V3n+2 = G(V3n+l) 

lV-3+ Van V3n+2 - 3n+1 

+ 
V3n + V3n+2- 2V3n+1 

Let us suppose we want to realize process (2) on a fixed-point computer with the 
following conditions: a) We use only one "word" for representing the Vi's; we may 
consider the content of the word as an integer; b) We may use higher precision for 
computing G(Vi). 

We cannot expect to compute G(Vj) without error; furthermore, if we are 
using higher precision, the result must be rounded to an integer. 

Definition. A rounding procedure denoted by [X]R is any integer-valued function 
of the real variable x satisfying the inequality: 

I [X]R - x | <1. 

We shall use the following particular rounding procedures: 
1) [x]/: rounding away from zero; it is defined by the inequality 

I [XI'_ I x; 

2) [x]/: rounding toward zero; it is defined by the inequality 

I l[x]4' IxI. 

Example. Let G(x) = 7/8 x and Vo 8; by (2), we have 

V, 7 

V2= 6,125 

V3 = 0. 

If we want to represent the Vi's only by integers and if we use the normal 
rounding procedure, we shall find: 

V1 = 7 

V2 = 6 

V3= ?. 

* For the proof see reference [3], part II. 
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This situation can be improved by using the following integer process: 

(XW3=+1 W3n + [G(W3n) + 43n - W3.] 

(3) =W+2 W3. + [G(W3n+l) + 43n+1 - W37J] 

+3= W3n + [2Wj2 - W3n - W3n+2] 

43,, and 63n+1 are the errors of computation of G(W3n) and G(W?n+l); since the 
numerator and the denominator are integers, it is possible with the help of the 
remainder to compute W3,,+3 without any error; if the numerator and the denomi- 
nator are simultaneously equal to zero, then Wan = W3n+= = W3n+2 and we set 
W3n+3 = 1v3n 

THEOREM 1. We suppose there exist numbers 0 ? b < 1, 0 < c < 1, 6 ? 0 
such that: 

1) x1-r ?b x0-r 

for any xo and xi satisfying the relation (1); 

2) 1 V3- r < c IVo-rl 

for any Vo and V3 satisfying the relations (2); 

3) i G(x) - G(y)l ? I x -y 

for any x and y; 
4) the errors Jz and 6n+1 in (3) satisfy the inequality 

?j a ?d =I(I - b )2(1 _ C) 
4 (1 + c))(1 + 3) 

then, for any Wo there exists a finite number N such that 

|W3 -r I < 1 + 
a 

for n > N. 1 - b 

THEOREM 2. We make the assumptions: 
1) The convergence of process (1) is alternating, i.e., for any x 

O < r-G(x) < x-r if x-r > C, 

O < G(x) -r < r-x if x-r < 0. 

G(x) = r if x = r; 

2) The errors 43, and $3n+1 in (3) satisfy the inequality 

?jI < a < 3, 

where a is a fixed number; then, for any Wo there exists a finite number N such that 

I W3n-r ] < 1 + a for n > N. 

Remark. Assumption (1 ) of Theorem 2 is sufficient for providing the conver- 
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gence of the Va's satisfying the equations (2) for any Vo. It is easy to prove the 
inequality: 

I V3- r I < Vo- rI 
3n 
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